Qualifying Synthetic Fuels for Military Applications

Presented at the

2005 DoD Standardization Conference

March 8, 2005

Herbert H. Dobbs, Jr
Team Leader, Fuel Cell Technology
and Alternative Fuels
National Automotive Center
RDECOM/TARDEC
586-574-5157
Herbert.Dobbs@us.army.mil

<u>Acknowledgements</u>

Office of Secretary of Defense Acquistion, Technology, and Logistics Advanced Systems & Concepts

- Ms. Sue Payton Deputy Under Secretary of Defense
- Dr. Theodore K. Barna Assistant Deputy Under Secretary of Defense

Crude Oil: Finite Supply, Rising Demand

Proven Oil Reserves at End of 2003

Top World Oil Consumers in 2003					
	Country	Total Demand (M BPD)			
1)	United States	20.0			
2)	China	5.6			
3)	Japan	5.4			
4)	Germany	2.6			
5)	Russia	2.6			
6)	India	2.2			
7)	South Korea	2.2			
8)	Canada	2.2			
9)	Brazil	2.1			
10)	France	2.1			

2.0

Source: BP Statistical Review of World Energy 2004 © BP

World Oil Balance, 1Q04
Supply = 82.1M BPD
Demand = 82.3M BPD
International Energy Agency Oil Market Report

11)

Mexico

U.S. Demand for Petroleum Products

Rising Demand for Transportation Fuels

(Quadrillion Btu/yr)

Source: Energy Information Administration (EIA)

Increasing Reliance on Petroleum Imports

Source: EIA (AEO 2004); Reference Case Scenario [Courtesy John Winslow-DoE]

U.S. Refining Capability Is Strained

Current Military Transportation Needs – Petroleum

<u>Service</u>	<u>Percent</u>	<u>BPD</u>	<u>BPY</u>
Army	6%	18,500	6.7 M
Air Force	55%	166,000	60.8 M
Navy	38%	114,000	41.8 M
Marines	<u>1%</u>	<u>1,500</u>	0.7 <u>M</u>
Total	100%	300,000	110.0 M

Note: 75% Domestic, 25% Overseas

Source: DESC, FY02

Bulk Transportation Fuels

Source: DESC Contract Awards, FY03

U.S. Hydrocarbon Resources

Coal
250 B tons =
1,138 Billion BOE

Petroleum Coke
798K BOE/day produced
- 361K BOE/day exported
437K BOE/day available

Natural Gas
184.8 Tcf =
33.3 Million BOE

Equivalent to 1.3 Trillion Barrels of Oil

Biomass
1.2 B tons =
31.75 Billion BOE

Oil Shale 270 B tons = 130 Billion BOE

> Tar Sands 6.1 Billion BOE

Fischer-Tropsch Technology

Emerging Global FT Industry

- New Capacity Under Consideration (1,223,000 bpd)
- New Capacity Announced (380,000 bpd)
- Existing Capacity (198,000 bpd)

History of Commerically Operated FT Plants

	Years	Capacity	Feed
Company	Operated	(BPD)	Stock
Sasol (S. Africa)	44	160,000	coal
MossGas (S. Africa)	10	22,500	nat. gas
Shell (Malaysia)	7	15,000	nat. gas

FT Projects in U.S.

- BP (Nikiski, AK)
 - 300 bpd demo plant (2003)
- FT product to near-by refinery
- ConocoPhillips (Ponca City, OK)
 - 400 bpd demo plant
 - Just starting up
- Syntroleum (Tulsa, OK)
 - 70 bpd demo plant (late 2003)
 - DoE co-sponsor
- Rentech (East Dubuque, IL)
 - Convert nat. gas-fed fertilizer plant to use coal
 - Co-produce FT fuels, fertilizer, and electricity
- proposed WMPI (Gilberton, PA)
 - Convert waste coal to 5000 bpd FT fuels and 41 MWe power
 - DoE co-sponsor

FT Plants U.S. Energy Security

Benefits to Domestic Production of Non-petroleum Fuels

- Provides Secure Supply
 - U.S. Military & Homeland Security
 - Transportation Market
 - Co-production of Electricity and Fuels
- Promotes Diversity of U.S. Energy Supply
 - Uses most plentiful domestic resources
 - Increases number of suppliers worldwide
 - Encourages monetization of worldwide non-petroleum resources
- Provides Stimulus for U. S. Economic Growth
 - New industry = new jobs
 - Offsets crude oil trade deficit (\$200 billion/year)
 - Downward pressure on global energy pricing

Fischer-Tropsch (FT) Fuels Fuels for the 21st Century

- Can use existing distribution infrastructure
- Cleaner Air Healthier Lives
 - Exceed EPA 2006 regulations for ultra-low sulfur fuels
 - No sulfur
 - Cleaner burning
 - No aromatics, no sulfur
 - Lower engine exhaust emissions
- Less toxic
 - No aromatics, no heteroatoms
 - Biodegradeable

FT Fuels Being Evaluated

- FT diesel fuel evaluations in bus fleet demonstrations
 - Denali National Park
 - Washington DC WMATA
- Fuels produced at Syntroleum Tulsa Port of Catoosa Demonstration Plant
 - DoE is co-sponsor
 - Ultra-clean Transportation Fuels Program
 - National Energy Technology Laboratory (NETL)
 - Marathon is co-sponsor
 - ICRC Program Manager

DoD-DoE Joint Agency Program for FT Fuels

- FY03 program start
 - Continuing FY04, FY05
- FT jet fuel supplied by Syntroleum Corp. from Tulsa demonstration plant
- Define FT fuel formulations needed to allow use in all DoD equipment
- Coordination of military/commercial aviation communities through Coordinating Research Council (CRC)

Managed by:

Research Participants

- Air Force
 - Air Force Fuels Research Laboratory/NAFRC
 - University of Dayton Research Institute
- Army
 - TARDEC Fuels & Lubricants Laboratory
 - Southwest Research Institute
- Navy
 - NAVAIR Fuels and Lubricants Laboratory
 - Naval Fuels and Lubricants Integrated Product Team
- DoE
 - National Energy Technology Laboratory
- Syntroleum Corp.

FT Fuels Reduce Emissions

- Less Pollutant Emissions
 - 2.4% less CO₂
 - 50% to 90% less particulate matter (PM)
 - 100% reduction in SOx
 - ~1% less fuel burn (increased gravimetric energy density)

Hydrocarbon types in Syntroleum S-5

Highly Paraffinic Fuel – normal and isoparaffins

Petroleum derived fuels are rich in aromatics, cycloparaffins, and heteroatoms

Reduced Particulate Emissions with FT Fuel Relative to JP-8

y 96% reduction* in particulate emissions at idle conditions.

^{*} Note: Results are highly dependent on engine model/year and composition of baseline fuel.

Reduced Exhaust Emissions with FT Fuel Relative to Low-Sulfur Diesel Fuel

5 TO TO

Over 50% reduction in particulate emissions in transient mode.

FT fuel burns more completely and emissions are significantly cleaner than EPA certified low-sulfur diesel fuel tested in 6.5L diesel engine.

FT Fuels Improve Aerospace Propulsion and Power Systems

FT Fuels Benefit Air/Ground/Marine Propulsion and Power Systems

FT Fuels Have Superior Thermal Stability

Relative Total Deposition – ECAT (6 Hrs)

Increased fuel thermal stability enables development of very fuel efficient propulsion systems

FT Fuels Have Excellent Low Temperature Properties

FT Fuel Benefits for Navy Shipboard Use

Storage Stability Test Results

(Syntroleum S-5)

w/o AO	0 Hr	24Hrs	48Hrs	72Hrs	96Hrs
Saybolt Color	30	29	24	19	22
Peroxide, ppm	0	>240	>240	>240	>240
Gums, mg/100ml	0	0	0.1	1	7.9
20 ppm AO	0 Hr	24Hrs	48Hrs	72Hrs	96Hrs
Saybolt Color	30	30	30	30	30
Peroxide, ppm	0	0	0	0	0
Gums, mg/100ml	0.4	0.3	0.4	0.5	1.3
Antioxidant ppm	22.2	9.5	8.7	7.6	9.1
30 ppm AO	0 Hr	24Hrs	48Hrs	72Hrs	96Hrs
Saybolt Color	30	30	30	30	30
Peroxide, ppm	0	0	0	0	0
Gums, mg/100ml	0.1	0.3	0.3	0.3	0.4
Antioxidant ppm	33.3	33	33.7	33	33.3

FT fuel responds well to standard antioxidant (AO) used for petroleum fuel.

Compatibility Evaluation Test Results

(2 FT fuels: F-T 1 and F-T 2)

- Excellent long-term storage stability
- Significant reduction in copper up-take
 - Increased thermal stability / Extended engine life

FT Fuels – The Next Single Fuel for the Battlefield

- Clean Fuels
 - Reduced emissions
 - No aromatics
- Enables Fuel Efficient Designs
 - Increased thermal stability
- Excellent low-temperature properties allow for:
 - higher altitude operations
 - improves diesel engine cold-starting capability

Take Action— Make It Happen

FT Plants in the U.S. converting our vast hydrocarbon resources into transportation fuels:

- Enhances our energy security
- Promotes diversity of supply
- Stimulates U.S. economic growth
- Leads to Cleaner Air Healthier Lives

The U.S. Military is preparing to use FT fuels:

- FT fuels offer advantages to the military
- DoD-DoE Joint Program is working to make possible –
 FT Fuel for the Military

National Energy Security Post 9/11, June 2002

(a study conducted by the United States Energy Association)

"More than 50% of the gasoline, aviation fuel, heating oil, diesel fuel and other petroleum products come from a dozen or more nations abroad. Some are friendly, some are not. The answer to increased energy security is diversifying our sources of supply . . ."